Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Frontiers of Environmental Science & Engineering
  3. Article

Continuous wildfires threaten public and ecosystem health under climate change across continents

  • Perspectives
  • Open access
  • Published: 19 July 2024
  • Volume 18, article number 130, (2024)
  • Cite this article
Download PDF

You have full access to this open access article

Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript
Continuous wildfires threaten public and ecosystem health under climate change across continents
Download PDF
  • Guochao Chen1,
  • Minghao Qiu2,3,
  • Peng Wang4,5,
  • Yuqiang Zhang6,
  • Drew Shindell7 &
  • …
  • Hongliang Zhang1,5,8 
  • 1655 Accesses

  • 9 Citations

  • 86 Altmetric

  • 12 Mentions

  • Explore all metrics

Abstract

Wildfires burn approximately 3%–4% of the global land area annually, resulting in massive emissions of greenhouse gases and air pollutants. Over the past two decades, there has been a declining trend in both global burned area and wildfire emissions. This trend is largely attributed to a decrease in wildfire activity in Africa, which accounts for a substantial portion of the total burned area and emissions. However, the northern high-latitude regions of Asia and North America have witnessed substantial interannual variability in wildfire activity, with several severe events occurring in recent years. Climate plays a pivotal role in influencing wildfire activity and has led to more wildfires in high-latitude regions. These wildfires pose significant threats to climate, ecosystems, and human health. Given recent changes in wildfire patterns and their impacts, it is critical to understand the contributors of wildfires, focus on deteriorating high-latitude areas, and address health risks in poorly managed areas to mitigate wildfire effects.

Article PDF

Download to read the full article text

Similar content being viewed by others

Wildland Fire

Chapter © 2023

Drivers and Impacts of the Record-Breaking 2023 Wildfire Season in Canada

Article Open access 20 August 2024

Human exposure and sensitivity to globally extreme wildfire events

Article 06 February 2017

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Climate-Change Impacts
  • Climate Change
  • Environmental Health
  • Environmental Communication
  • Environmental Geography
  • Fire Ecology
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Abades S R, Gaxiola A, Marquet P A (2014). Fire, percolation thresholds and the savanna forest transition: a neutral model approach. Journal of Ecology, 102(6): 1386–1393

    Article  Google Scholar 

  • Abatzoglou J T, Williams A P (2016). Impact of anthropogenic climate change on wildfire across western US forests. Proceedings of the National Academy of Sciences of the United States of America, 113(42): 11770–11775

    Article  CAS  Google Scholar 

  • Abdo M, Ward I, O’Dell K, Ford B, Pierce J R, Fischer E V, Crooks J L (2019). Impact of wildfire smoke on adverse pregnancy outcomes in Colorado, 2007–2015. International Journal of Environmental Research and Public Health, 16(19): 3720

    Article  CAS  Google Scholar 

  • Alló M, Loureiro M L (2020). Assessing preferences for wildfire prevention policies in Spain. Forest Policy and Economics, 115: 102145

    Article  Google Scholar 

  • AMAP 2222)). AMAP Assessment 2021: Impacts of Short-lived Climate Forcers on Arctic Climate, Air Quality, and Human Health. Tromso: Arctic Monitoring and Assessment Programme (AMAP)

  • Andela N, Van Der Werf G R (2014). Recent trends in African fires driven by cropland expansion and El Nino to La Nina transition. Nature Climate Change, 4(9): 791–795

    Article  Google Scholar 

  • Arora V K, Melton J R (2018). Reduction in global area burned and wildfire emissions since 1930s enhances carbon uptake by land. Nature Communications, 9(1): 1326

    Article  Google Scholar 

  • Aubry-Wake C, Bertoncini A, Pomeroy J W (2022). Fire and ice: The impact of wildfire-affected albedo and irradiance on glacier melt. Earth’s Future, 10(4): e2022EF002685

    Article  Google Scholar 

  • Bernath P, Boone C, Crouse J (2022). Wildfire smoke destroys stratospheric ozone. Science, 375(6586): 1292–1295

    Article  CAS  Google Scholar 

  • Bowman D M J S, Balch J K, Artaxo P, Bond W J, Carlson J M, Cochrane M A, D’Antonio C M, Defries R S, Doyle J C, Harrison S P, et al. (2009). Fire in the Earth system. Science, 324(5926): 481–484

    Article  CAS  Google Scholar 

  • Bowman D M J S, Williamson G J, Price O F, Ndalila M N, Bradstock R A (2021). Australian forests, megafires and the risk of dwindling carbon stocks. Plant, Cell & Environment, 44(2): 347–355

    Article  CAS  Google Scholar 

  • Brown E K, Wang J, Feng Y (2021). US wildfire potential: a historical view and future projection using high-resolution climate data. Environmental Research Letters, 16(3): 034060

    Article  Google Scholar 

  • Burke M, Heft-Neal S, Li J, Driscoll A, Baylis P, Stigler M, Weill J A, Burney J A, Wen J, Childs M L, et al. (2022). Exposures and behavioural responses to wildfire smoke. Nature Human Behaviour, 6(10): 1351–1361

    Article  Google Scholar 

  • Canosa I V, Biesbroek R, Ford J, Mccarty J L, Orttung R W, Paavola J, Burnasheva D (2023). Wildfire adaptation in the Russian Arctic: a systematic policy review. Climate Risk Management, 39: 100481

    Article  Google Scholar 

  • Cassidy L, Perkins J, Bradley J (2022). Too much, too late: fires and reactive wildfire management in northern Botswana’s forests and woodland savannas. African Journal of Range & Forage Science, 39(1): 160–174

    Article  Google Scholar 

  • Chas-Amil M L, Prestemon J P, Mcclean C J, Touza J (2015). Humanignited wildfire patterns and responses to policy shifts. Applied Geography, 56: 164–176

    Article  Google Scholar 

  • Chen G, Guo Y, Yue X, Tong S, Gasparrini A, Bell M L, Armstrong B, Schwartz J, Jaakkola J J K, Zanobetti A, et al. (2021a). Mortality risk attributable to wildfire-related PM25 pollution: a global time series study in 749 locations. Lancet. Planetary Health, 5(9): e579–e587

    Article  Google Scholar 

  • Chen H, Samet J M, Bromberg P A, Tong H (2021b). Cardiovascular health impacts of wildfire smoke exposure. Particle and Fibre Toxicology, 18(1): 2

    Article  CAS  Google Scholar 

  • Childs M L, Li J, Wen J, Heft-Neal S, Driscoll A, Wang S, Gould C F, Qiu M, Burney J, Burke M (2022). Daily local-level estimates of ambient wildfire smoke PM2.5 for the contiguous US. Environmental Science & Technology, 56(19): 13607–13621

    Article  CAS  Google Scholar 

  • Coogan S C P, Robinne F N, Jain P, Flannigan M D (2019). Scientists’ warning on wildfire: a Canadian perspective. Canadian Journal of Forest Research, 49(9): 1015–1023

    Article  Google Scholar 

  • Coop J D, Parks S A, Stevens-Rumann C S, Crausbay S D, Higuera P E, Hurteau M D, Tepley A, Whitman E, Assal T, Collins B M, et al. (2020). Wildfire- driven forest conversion in western North American landscapes. Bioscience, 70(8): 659–673

    Article  Google Scholar 

  • Curt T, Frejaville T (2018). Wildfire policy in Mediterranean France: How far is it efficient and sisttainbble? Risk Analysis, 38(3): 472–488

    Article  Google Scholar 

  • Doerr S H, Santin C (2016). Global trends in wildfire and its impacts: perceptions versus realities in a changing world. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1696): 20150345

    Article  Google Scholar 

  • Dombeck M P, Williams J E, Wood C A (2004). Wildfire policy and public lands: Integrating scientific understanding with social concerns across landscapes. Conservation Biology, 18(4): 883–889

    Article  Google Scholar 

  • Fang K, Yao Q, Guo Z, Zheng B, Du J, Qi F, Yan P, Li J, Ou T, Liu J, et al. (2021). ENSO modulates wildfire activity in China. Nature Communications, 12(1): 1764

    Article  CAS  Google Scholar 

  • Fernandes P M, Botelho H S (2003). A review of prescribed burning effectiveness in fire hazard reduction. International Journal of Wildland Fire, 12(2): 117–128

    Article  Google Scholar 

  • Fettig C J, Runyon J B, Homicz C S, James P M A, Ulyshen M D (2022). Fire and insect interactions in North American forests. Current Forestry Reports, 8(4): 301–316

    Article  Google Scholar 

  • Gonzalez-Mathiesen C, Ruane S, March A (2021). Integrating wildfire risk management and spatial planning: a historical review of two Australian planning systems. International Journal of Disaster Risk Reduction, 53: 101984

    Article  Google Scholar 

  • Graham A M, Pringle K J, Pope R J, Arnold S R, Conibear L A, Burns H, Rigby R, Borchers-Arriagada N, Butt E W, Kiely L, et al. (2021). Impact of the 2019/2020 Australian megafires on air quality and health. Geohealth, 5(10): e2021GH000454

    Article  Google Scholar 

  • Hessburg P F, Prichard S J, Hagmann R K, Povak N A, Lake F K (2021). Wildfire and climate change adaptation of western North American forests: a case for intentional management. Ecological Applications, 31(8): e02432

    Article  Google Scholar 

  • Hessilt T D, Abatzoglou J T, Chen Y, Randerson J T, Scholten R C, Werf G V D, Veraverbeke S (2022). Future increases in lightning ignition efficiency and wildfire occurrence expected from drier fuels in boreal forest ecosystems of western North America. Environmental Research Letters, 17(5): 054008

    Article  Google Scholar 

  • Hirota M, Nobre C, Oyama M D, Bustamante M M (2010). The climatic sensitivity of the forest, savanna and forest: savanna transition in tropical South America. New Phytologist, 187(3): 707–719

    Article  Google Scholar 

  • Holden Z A, Swanson A, Luce C H, Jolly W M, Maneta M, Oyler J W, Warren D A, Parsons R, Affleck D (2018). Decreasing fire season precipitation increased recent western US forest wildfire activity. Proceedings of the National Academy of Sciences of the United States of America, 115(30): E0399–E0350

    Google Scholar 

  • Holloway J E, Lewkowicz A G, Douglas T A, Li X, Turetsky M R, Baltzer J L, Jin H (2020). Impact of wildfire on permafrost landscapes: a review of recent advances and future prospects. Permafrost and Periglacial Processes, 31(3): 371–304

    Article  Google Scholar 

  • Hong X, Liu C, Zhang C, Tian Y, Wu H, Yin H, Zhu Y, Cheng Y (2023). Vast ecosystem disturbance in a warming climate may jeopardize our climate goal of reducing CO4: a case study for megafires in the Australian ‘black summer’. Science of the Total Environment, 866: 161387

    Article  CAS  Google Scholar 

  • IPCC (2021). Climate Change 4241—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press

    Google Scholar 

  • Jain P, Castellanos-Acuna D, Coogan S C P, Abatzoglou J T, Flannigan M D (2022). Observed increases in extreme fire weather driven by atmospheric humidity and temperature. Nature Climate Change, 12(1): 63–70

    Article  Google Scholar 

  • Johnston F H, Henderson S B, Chen Y, Randerson J T, Marlier M, Defries R S, Kinney P, Bowman D M, Brauer M (2012). Estimated global mortality attributable to smoke from landscape fires. Environmental Health Perspectives, 120(5): 695–701

    Article  Google Scholar 

  • Kharuk V I, Ponomarev E I, Ivanova G A, Dvinskaya M L, Coogan S C P, Flannigan M D (2021). Wildfires in the Siberian taiga. Ambio, 50(11): 1953–1974

    Article  Google Scholar 

  • Knorr W, Dentener F, Lamarque J F, Jiang L, Arneth A (2017). Wildfire air pollution hazard during the 41st century. Atmospheric Chemistry and Physics, 17(14): 9223–9236

    Article  CAS  Google Scholar 

  • Kolden C A (2019). We’re not doing enough prescribed fire in the western United States to mitigate wildfire risk. Fire, 2(2): 30

    Article  Google Scholar 

  • Koshkin A L, Hatchett B J, Nolin A W (2022). Wildfire impacts on western United States snowpacks. Frontiers in Water, 4: 971271

    Article  Google Scholar 

  • Lei Y, Yue X, Liao H, Zhang L, Yang Y, Zhou H, Tian C, Gong C, Ma Y, Gao L, et al. (2021). Indirect contributions of global fires to surface ozone through ozone–vegetation feedback. Atmospheric Chemistry and Physics, 21(15): 11531–11543

    Article  CAS  Google Scholar 

  • Li F, Zhang X, Kondragunta S (2021). Highly anomalous fire emissions from the 2019–2020 Australian bushfires. Environmental Research Communications, 3(10): 105005

    Article  Google Scholar 

  • Liu X, Huey L G, Yokelson R J, Selimovic V, Simpson I J, Müller M, Jimenez J L, Campuzano-Jost P, Beyersdorf A J, Blake D R, et al. (2017). Airborne measurements of western U.S. wildfire emissions: comparison with prescribed burning and air quality implications. Journal of Geophysical Research, D, Atmospheres, 122(1): 6108–6129

    Article  CAS  Google Scholar 

  • Liu Z, Ballantyne A P, Cooper L A (2019). Biophysical feedback of global forest fires on surface temperature. Nature Communications, 10(1): 214

    Article  Google Scholar 

  • McClure C D, Jaffe D A (2018). US particulate matter air quality improves except in wildfire-prone areas. Proceedings of the National Academy of Sciences of the United States of America, 115(31): 7901–7906

    Article  CAS  Google Scholar 

  • Mekonnen Z A, Riley W J, Randerson J T, Grant R F, Rogers B M (2019). Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire. Nature Plants, 5(9): 952–958

    Article  Google Scholar 

  • Mueller S E, Thode A E, Margolis E Q, Yocom L L, Young J D, Iniguez J M (2020). Climate relationships with increasing wildfire in the southwestern US from 1984 to 2015. Forest Ecology and Management, 460: 117861

    Article  Google Scholar 

  • Nechita-Banda N, Krol M, Van Der Werf G R, Kaiser J W, Pandey S, Huijnen V, Clerbaux C, Coheur P, Deeter M N, Rockmann T (2018). Monitoring emissions from the 2015 Indonesian fires using CO satellite data. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1760): 20170307

    Article  Google Scholar 

  • Neumann J E, Amend M, Anenberg S, Kinney P L, Sarofim M, Martinich J, Lukens J, Xu J W, Roman H (2021). Estimating PM2.5-related premature mortality and morbidity associated with future wildfire emissions in the western US. Environmental Research Letters, 16(3): 035019

    Article  CAS  Google Scholar 

  • Nikolakis W, Roberts E (2022). Wildfire governance in a changing world: insights for policy learning and policy transfer. Risk, Hazards & Crisis in Public Policy, 13(2): 144–164

    Article  Google Scholar 

  • Ohneiser K, Ansmann A, Kaifler B, Chudnovsky A, Barja B, Knopf D A, Kaifler N, Baars H, Seifert P, Villanueva D, et al. (2022). Australian wildfire smoke in the stratosphere: the decay phase in 2020/21 and impact on ozone depletion. Atmospheric Chemistry and Physics, 22(11): 7417–7442

    Article  CAS  Google Scholar 

  • Pausas J G, Keeley J E (2021). Wildfires and global change. Frontiers in Ecology and the Environment, 19(7): 387–395

    Article  Google Scholar 

  • Pechony O, Shindell D T (2010). Driving forces of global wildfires over the past millennium and the forthcoming century. Proceedings of the National Academy of Sciences of the United States of America, 107(45): 19167–19170

    Article  CAS  Google Scholar 

  • Pérez-Invernón F J, Gordillo-Vázquez F J, Huntrieser H, Jöckel P (2023). Variation of lightning-ignited wildfire patterns under climate change. Nature Communications, 14(1): 739

    Article  Google Scholar 

  • Radeloff V C, Helmers D P, Kramer H A, Mockrin M H, Alexandre P M, Bar-Massada A, Butsic V, Hawbaker T J, Martinuzzi S, Syphard A D, et al. (2018). Rapid growth of the US wildland-urban interface raises wildfire risk. Proceedings of the National Academy of Sciences of the United States of America, 115(13): 3314–3319

    Article  CAS  Google Scholar 

  • Read N, Duff T J, Taylor P G (2018). A lightning-caused wildfire ignition forecasting model for operational use. Agricultural and Forest Meteorology, 253–254: 233–246

    Article  Google Scholar 

  • Reid C E, Brauer M, Johnston F H, Jerrett M, Balmes J R, Elliott C T (2016). Critical review of health impacts of wildfire smoke exposure. Environmental Health Perspectives, 124(9): 1334–1343

    Article  Google Scholar 

  • Richardson D, Black A S, Irving D, Matear R J, Monselesan D P, Risbey J S, Squire D T, Tozer C R (2022). Global increase in wildfire potential from compound fire weather and drought. npj Climate and Atmospheric Science, 5(1): 1–12

    Article  Google Scholar 

  • Rodrigues M, Cunill Camprubá À, Balaguer-Romano R, Coco Megía C J, Castañares F, Ruffault J, Fernandes P M, Resco De Dios V (2023). Drivers and implications of the extreme 4244 wildfire season in Southwest Europe. Science of the Total Environment, 859:160320

    Article  CAS  Google Scholar 

  • Ruffault J, Curt T, Martin-Stpaul N K, Moron V, Trigo R M (2018). Extreme wildfire events are linked to global-change-type droughts in the northern Mediterranean. Natural Hazards and Earth System Sciences, 18(3): 847–856

    Article  Google Scholar 

  • Schoennagel T, Balch J K, Brenkert-Smith H, Dennison P E, Harvey B J, Krawchuk M A, Mietkiewicz N, Morgan P, Moritz M A, Rasker R, et al. (2017). Adapt to more wildfire in western North American forests as climate changes. Proceedings of the National Academy of Sciences of the United States of America, 114(18): 4582–4590

    Article  CAS  Google Scholar 

  • Shindell D, Faluvegi G, Nagamoto E, Parsons L, Zhang Y (2024). Reductions in premature deaths from heat and particulate matter air pollution in South Asia, China, and the United States under decarbonization. Proceedings of the National Academy of Sciences of the United States of America, 121(5): e2312832120

    Article  CAS  Google Scholar 

  • Song X, Zhang S, Huang H, Ding Q, Guo F, Zhang Y, Li J, Li M, Cai W, Wang C (2024). A systematic review of the inequality of health burdens related to climate change. Frontiers of Environmental Science & Engineering, 18(5): 63

    Article  Google Scholar 

  • Steel Z L, Koontz M J, Safford H D (2018). The changing landscape of wildfire: burn pattern trends and implications for California’s yellow pine and mixed conifer forests. Landscape Ecology, 33(7): 1159–1176

    Article  Google Scholar 

  • Stephens S L, Collins B M, Fettig C J, Finney M A, Hoffman C M, Knapp E E, North M P, Safford H, Wayman R B (2018). Drought, tree mortality, and wildfire in forests adapted to frequent fire. Bioscience, 68(2): 77–88

    Article  Google Scholar 

  • Tang R, Mao J, Jin M, Chen A, Yu Y, Shi X, Zhang Y, Hoffman F M, Xu M, Wang Y (2021). Interannual variability and climatic sensitivity of global wildfire activity. Advances in Climate Change Research, 12(5): 686–695

    Article  Google Scholar 

  • Tian C, Yue X, Zhu J, Liao H, Yang Y, Chen L, Zhou X, Lei Y, Zhou H, Cao Y (2023). Projections of fire emissions and the consequent impacts on air quality under 1.5 °C and 2 °C global warming. Environmental Pollution, 323: 121311

    Article  CAS  Google Scholar 

  • Trucchia A, Meschi G, Fiorucci P, Gollini A, Negro D (2022). Defining wildfire susceptibility maps in Italy for understanding seasonal wildfire regimes at the national level. Fire, 5(1): 30

    Article  Google Scholar 

  • Tymstra C, Stocks B J, Cai X, Flannigan M D (2020). Wildfire management in Canada: review, challenges and opportunities. Progress in Disaster Science, 5: 100045

    Article  Google Scholar 

  • van der Velde I R, van der Werf G R, Houweling S, Maasakkers J D, Borsdorff T, Landgraf J, Tol P, van Kempen T A, van Hees R, Hoogeveen R, et al. (2021). Vast CO2 release from Australian fires in 2019–2020 constrained by satellite. Nature, 597(7876): 366–369

    Article  CAS  Google Scholar 

  • van der Werf G R, Randerson J T, Giglio L, van Leeuwen T T, Chen Y, Rogers B M, Mu M, van Marle M J E, Morton D C, Collatz G J, et al. (2017). Global fire emissions estimates during 1997–2016. Earth System Science Data, 9(2): 697–720

    Article  Google Scholar 

  • Veraverbeke S, Rogers B M, Goulden M L, Jandt R R, Miller C E, Wiggins E B, Randerson J T (2017). Lightning as a major driver of recent large fire years in North American boreal forests. Nature Climate Change, 7(7): 529–534

    Article  Google Scholar 

  • Wang S W, Lim C H, Lee W K (2021). A review of forest fire and policy response for resilient adaptation under changing climate in the Eastern Himalayan region. Forest Science and Technology, 17(4): 180–188

    Article  Google Scholar 

  • Wang Z, Wang Z, Zou Z, Chen X, Wu H, Wang W, Su H, Li F, Xu W, Liu Z, et al. (2023). Severe global environmental issues caused by Canada’s record-breaking wildfires in 2023. Advances in Atmospheric Sciences, 41(4): 565–571

    Article  Google Scholar 

  • Wei F, Wang S, Fu B, Brandt M, Pan N, Wang C, Fensholt R (2020). Nonlinear dynamics of fires in Africa over recent decades controlled by precipitation. Global Change Biology, 26(8): 4495–4505

    Article  Google Scholar 

  • Westerling A L (2016). Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1696): 20150178

    Article  Google Scholar 

  • Whitman E, Parisien M A, Thompson D K, Flannigan M D (2019). Short-interval wildfire and drought overwhelm boreal forest resilience. Scientific Reports, 9(1): 18796

    Article  CAS  Google Scholar 

  • Williams A P, Abatzoglou J T, Gershunov A, Guzman-Morales J, Bishop D A, Balch J K, Lettenmaier D P (2019). Observed impacts of anthropogenic climate change on wildfire in California. Earth’s Future, 7(8): 892–910

    Article  Google Scholar 

  • Wilmot T Y, Mallia D V, Hallar A G, Lin J C (2022). Wildfire plumes in the Western US are reaching greater heights and injecting more aerosols aloft as wildfire activity intensifies. Scientific Reports, 12(1): 12400

    Article  CAS  Google Scholar 

  • Wu Y, Li S, Xu R, Chen G, Yue X, Yu P, Ye T, Wen B, De Sousa Zanotti Stagliorio Coêlho M, Saldiva P H N, et al. (2023). Wildfire-related PM2.5 and health economic loss of mortality in Brazil. Environment International, 174: 107906

    Article  CAS  Google Scholar 

  • Xu R, Ye T, Yue X, Yang Z, Yu W, Zhang Y, Bell M L, Morawska L, Yu P, Zhang Y, et al. (2023). Global population exposure to landscape fire air pollution from 2000 to 2019. Nature, 621(7979): 521–529

    Article  CAS  Google Scholar 

  • Ye T, Xu R, Yue X, Chen G, Yu P, Coelho M, Saldiva P H N, Abramson M J, Guo Y, Li S (2022). Short- term exposure to wildfire-related PM2.5 increases mortality risks and burdens in Brazil. Nature Communications, 13(1): 7651

    Article  CAS  Google Scholar 

  • Ying L, Cheng H, Shen Z, Guan P, Luo C, Peng X (2021). Relative humidity and agricultural activities dominate wildfire ignitions in Yunnan, Southwest China: patterns, thresholds, and implications. Agricultural and Forest Meteorology, 307: 108540

    Article  Google Scholar 

  • Yu P, Davis S M, Toon O B, Portmann R W, Bardeen C G, Barnes J E, Telg H, Maloney C, Rosenlof K H (2021). Persistent stratospheric warming due to 2019–2020 Australian wildfire smoke. Geophysical Research Letters, 48(7): e2021GL092609

    Article  Google Scholar 

  • Yue X, Mickley L J, Logan J A, Hudman R C, Martin M V, Yantosca R M (2015). Impact of 2050 climate change on North American wildfire: consequences for ozone air quality. Atmospheric Chemistry and Physics, 15(17): 10033–10055

    Article  CAS  Google Scholar 

  • Yue X, Mickley L J, Logan J A, Kaplan J O (2013). Ensemble projections of wildfire activity and carbonaceous aerosol concentrations over the western United States in the mid-21st century. Atmospheric Environment, 77: 767–780

    Article  CAS  Google Scholar 

  • Zhang Y, Ye T, Yu P, Xu R, Chen G, Yu W, Song J, Guo Y, Li S (2023). Preterm birth and term low birth weight associated with wildfire-specific PM2.5: a cohort study in New South Wales, Australia during 2016–2019. Environment International, 174: 107879

    Article  CAS  Google Scholar 

  • Zheng B, Ciais P, Chevallier F, Chuvieco E, Chen Y, Yang H (2021). Increasing forest fire emissions despite the decline in global burned area. Science Advances, 7(39): eabh2646

    Article  Google Scholar 

  • Zheng B, Ciais P, Chevallier F, Yang H, Canadell J G, Chen Y, Van Der Velde I R, Aben I, Chuvieco E, Davis S J, et al. (2023). Record-high CO2 emissions from boreal fires in 2021. Srience, 379(6635): 912–917

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 42077194, 42061134008, and 42377098), the Shanghai International Science and Technology Partnership Project (China) (No. 21230780200), and the Shanghai General Project (China) (No. 23ZR1406100).

Author information

Authors and Affiliations

  1. Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China

    Guochao Chen & Hongliang Zhang

  2. Doerr School of Sustainability and Center for Innovation in Global Health, Stanford University, Stanford, CA, 94305, USA

    Minghao Qiu

  3. School of Marine and Atmospheric Science, and Program in Public Health, Stony Brook University, Stony Brook, NY, 11794, USA

    Minghao Qiu

  4. Department of Atmospheric and Marine Sciences, Fudan University, Shanghai, 200438, China

    Peng Wang

  5. IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, 200438, China

    Peng Wang & Hongliang Zhang

  6. Environment Research Institute, Shandong University, Qingdao, 266237, China

    Yuqiang Zhang

  7. Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA

    Drew Shindell

  8. Institute of Eco-Chongming, Shanghai, 200062, China

    Hongliang Zhang

Authors
  1. Guochao Chen
    View author publications

    Search author on:PubMed Google Scholar

  2. Minghao Qiu
    View author publications

    Search author on:PubMed Google Scholar

  3. Peng Wang
    View author publications

    Search author on:PubMed Google Scholar

  4. Yuqiang Zhang
    View author publications

    Search author on:PubMed Google Scholar

  5. Drew Shindell
    View author publications

    Search author on:PubMed Google Scholar

  6. Hongliang Zhang
    View author publications

    Search author on:PubMed Google Scholar

Corresponding authors

Correspondence to Drew Shindell or Hongliang Zhang.

Ethics declarations

Conflict of Interests The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Highlights

† Wildfire and emission patterns vary globally, intensifying at high latitudes.

† Climate change-driven warming and drought are key in wildfire patterns.

† Wildfires impact health, especially in high-emission areas, lack management.

Supplementary Materials

Appendix

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Qiu, M., Wang, P. et al. Continuous wildfires threaten public and ecosystem health under climate change across continents. Front. Environ. Sci. Eng. 18, 130 (2024). https://doi.org/10.1007/s11783-024-1890-6

Download citation

  • Received: 22 March 2024

  • Revised: 28 June 2024

  • Accepted: 30 June 2024

  • Published: 19 July 2024

  • DOI: https://doi.org/10.1007/s11783-024-1890-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Wildfire activity
  • Wildfire emissions
  • Climate change
  • Air quality

Profiles

  1. Drew Shindell View author profile
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Associated Content

Part of a collection:

Special Issue—Visions

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature